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Abstract. We present the complete classification of master symmetries related to a non-
degenerate Hamiltonian system that is integrable in the Arnol’d–Liouville’s sense. It is
shown that aC-integrable Hamiltonian system cannot have generators of degree greater than 2.
Specific properties of the master symmetries classified in terms of the action–angle variables are
investigated.

1. Introduction

The notion of a master symmetry, introduced in [1] by Fokas and Fuchssteiner, has been
intensively studied in the framework of the theory of Hamiltonian dynamical systems
[2, 3, 4, 5, 6, 7, 8, 9, 10]. These remarkable vector fields play an especially important role in
the bi-Hamiltonian case, where the existence of a recursion operator provides a mechanism
for generating an infinite hierarchy of master symmetries constituting a Virasoro-type Lie
algebra [10]. Each member of such a hierarchy generates the corresponding hierarchies of
Hamiltonian vector fields, their first integrals and Poisson (or symplectic) structures. This
approach has been successfully applied to a number of well known systems of evolution
equations [6, 7, 8, 9, 10].

Brouzet [11], studying non-degenerate integrable Hamiltonian systems, classified all
symmetries of such systems in terms of the action–angle variables. One can extend this
result to the master symmetries and investigate their properties using a similar approach.
We note that ten Eikelder in [12], in a way considered an inverse problem for a class of
Hamiltonian systems, showing that in a special system of coordinates the corresponding
recursion operator, the Hamiltonian function and the symplectic form all have a special
(diagonal) form. In this case the recursion operator generates an infinite sequence of non-
trivial symmetries for the Hamiltonian system. It was also shown that non-degenerate
Hamiltonian systems having action–angle coordinates enjoy all of those properties.

Consider an even-dimensional Poisson manifold(M2k, P ) defined by a non-degenerate
Poisson bivectorP ij . A Hamiltonian system

ẋi = P iα ∂H

∂xα
i = 1, . . . , 2k (1)

is said to becompletely integrable in the Arnol’d–Liouville senseif it has k functionally
independent first integrals{F1, F2, . . . , Fk} in involution with respect to the Poisson bracket
defined byP ij :

{Fi, Fj }P = P αβ ∂Fi

∂xα

∂Fj

∂xβ
= 0. (2)
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We use the Einstein summation convention. The Arnol’d–Liouville theorem [13] states that
the mapπ : M → Rk : m → {F1(m), . . . , Fk(m)} produces the constant level surface
Nc = {m ∈ M2k, π(m) = c} (we assumeNc to be connected), which is a submanifold of
dimensionk and there exists a contractible neighbourhoodV ∈ Rk aboutc ∈ Rk such that
π−1(V ) = Nc × V . ThenNc is an invariant submanifold with respect to the Hamiltonian
vector fieldXH defining (1). The action–angle variables(Ii, ϕi), i = 1, . . . , k are obtained
whenNc andV (being contractible) are diffeomorphic to a torusTk or a toroidal cylinder
Tm × Rk−m (if Nc is not compact) and an open ballBk, respectively. In this case the angle
coordinatesϕi, . . . , ϕk run over a torusTk, 0 6 ϕj 6 2π (in the compact case) or over a
cylinder Tm × Rk−m (if the submanifoldNc is not compact), while the action coordinates
I1, . . . , Ik are defined in an open ballBk. In these variables the completely integrable system
(1) takes the form

İi = 0 ϕ̇i = ∂H

∂Ii

H = H(I1, . . . , Ik) i = 1, . . . , k. (3)

The symplectic structureω := P −1 is canonical:ω = ∑k
i=1 dIi ∧dϕi and the corresponding

Hamiltonian vector fieldXH becomes

XH =
k∑

i=1

∂H

∂Ii

∂

∂ϕi

. (4)

Then the system (1) is said to benon-degenerateif its Hessian has the maximum rank on
a dense subset ofRk, or

det

∥∥∥∥∂2H(I)

∂Ii∂Ij

∥∥∥∥ 6= 0. (5)

This implies that any first integralF of the Hamiltonian system (1) depends on the action
variables only:

dF

dt
= 0 ⇒ F = F(I1, . . . , Ik) := F(I). (6)

We note that a Hamiltonian system is calledC-integrable in a domainO ⊂ M iff it is
integrable in the Arnol’d–Liouville sense, non-degenerate and in the domainO all invariant
submanifolds of constant level ofk involutive first integrals are compact (see [14]).

2. Master symmetries in the action–angle variables

The Brouzet lemma states that all symmetries of the non-degenerate integrable system (1)
or the vector fieldsY commuting withXH : [XH, Y ] = 0 have the following form:

Y =
k∑

i=1

V i(I )
∂

∂ϕi

(7)

where (Ii, ϕi), i = 1, . . . , k are the corresponding action–angle coordinates. The
representation (7) allows us to classify all master symmetries of (1), i.e. the vector fieldsZ

satisfying

[XH, [XH, Z]] = 0 (8)

provided [XH, Z] 6= 0. Indeed, it follows from (8) that̃Y := [XH, Z] is a symmetry ofXH

and so in the action–angle variables by the Brouzet lemma is given by

Ỹ =
k∑

i=1

V i(I )
∂

∂ϕi

. (9)
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Let us now assume that a master symmetryZ of the system (1) has the following general
form:

Z(I, ϕ) =
k∑

i=1

Ui(I, ϕ)
∂

∂ϕi

+
k∑

i=1

Wi(I, ϕ)
∂

∂Ii

i = 1, . . . , k. (10)

Then, commutingXH = ∑k
i=1(∂H/∂Ii) ∂/∂ϕi with the vector fieldZ, we obtain

Ỹ =
k∑

j=1

∂H(I)

∂Ii

∂Uj (I, ϕ)

∂ϕi

∂

∂ϕj

+
k∑

j=1

∂H(I)

∂Ii

∂Wj (I, ϕ)

∂ϕi

∂

∂Ij
−

k∑
j=1

Wi(I, ϕ)
∂2H(I)

∂Ii∂Ij

∂

∂ϕj

=
k∑

j=1

V j (I )
∂

∂ϕj

.

This leads to the following two conditions:

∂Wi(I, ϕ)

∂ϕj

= 0 (11)

∂H(I)

∂Ii

∂Uj (I, ϕ)

∂ϕi

− Wi(I, ϕ)
∂2H(I)

∂Ii∂Ij
= V j (I ) (12)

i, j = 1, . . . , k.

Equation (11) implies thatWi = Wi(I) for eachi = 1, . . . , k, for in this caseXH(Wi) = 0,
i.e. W is a first integral of the system (1) and by (6) depends only on the action variables.
From (12) we conclude that∂Uj (I, ϕ)/∂ϕi for i, j = 1, . . . , k does not depend on the angle
coordinates. ThereforeUj is an affine function of the variablesϕi; i = 1, . . . , k. However,
U is a global function and so is periodic inϕ. ThusUj = Uj(I). This yields the general
formula for a master symmetry of the Hamiltonian system (1) in the action–angle variables.

Lemma 2.1.Given a C-integrable Hamiltonian system (3). Then, an arbitrary master
symmetryZ ∈ T M2k of the corresponding Hamiltonian vector fieldXH is given by the
general formula

Z =
k∑

i=1

Ui(I )
∂

∂ϕi

+
k∑

i=1

Wi(I)
∂

∂Ii

. (13)

The generic formula (13) enables us to verify many specific properties of master
symmetries. For example, it is easy to see that the mapZ : FM → FM defined by a
master symmetryZ of the non-degenerate integrable Hamiltonian system (1) maps solutions
to solutions. At the same time all master symmetries of (1) constitute a non-Abelian Lie
algebra.

3. On the generator of degreen

The notion of a master symmetry admits a natural generalization [5]. We call a vector field
Z a generator of degreen of a Hamiltonian vector fieldXH if

Ln
XH

Z = 0

provided thatLn−1
XH

Z 6= 0. HereLXH
denotes the usual Lie derivative along the vector

field XH : LXH
Z = [XH, Z]. Clearly, master symmetries and symmetries are generators

of degrees 2 and 1, respectively. This notion was employed by Oevel and Falck [4] to
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investigate the problem of integrability of the Calogero–Moser system. We shall show that
a C-integrable non-degenerate Hamiltonian system cannot have generators of degree greater
than 3. Indeed, assume that the system (1) isC-integrable and has a generator of degree 3,
i.e. there exists a vector fieldZ, such that

[XH, [XH, [XH, Z]]] = 0

while [XH, [XH, Z]] 6= 0. Then [XH, Z] is a master symmetry ofXH , which, according to
the generic formula (13), takes the following form:

[XH, Z] =
k∑

i=1

Ui ∂

∂ϕi

+
k∑

i=1

Wi(I)
∂

∂Ii

. (14)

On the other hand, for the vector fieldZ given by

Z =
k∑

i=1

Zi
1(I, ϕ)

∂

∂ϕi

+
k∑

i=1

Zi
2(I, ϕ)

∂

∂Ii

(15)

we have

[XH, Z] =
k∑

i=1

∂H(I)

∂Ii

∂Z
j

1(I, ϕ)

∂ϕi

∂

∂ϕj

+
k∑

i=1

∂H(I)

∂Ii

∂Z
j

2(I, ϕ)

∂ϕi

∂

∂Ij
− Zi

2
∂2H(I)

∂Ii∂Ij

∂

∂ϕj

. (16)

Comparing equations (14) and (16), we obtain

Wj(I) = ∂H(I)

∂Ii

∂Z
j

2(I, ϕ)

∂ϕi

(17)

and

Uj(I) = ∂H

∂Ii

∂Z
j

1(I, ϕ)

∂ϕi

− Zi
2
∂2H(I)

∂Ii∂Ij
(18)

for i, j = 1, . . . , k. From (17) it follows thatZi
2, i = 1, . . . , k are affine functions in

the angle variables, while (18) suggests thatZi
1, i = 1, . . . , k are also affine functions

in ϕ1, . . . , ϕk andZ2 depends on the action variables only (we have used the condition of
non-degeneracy (5)). SinceZi

1, i = 1, . . . , k are globally defined on the compact torus, they
also depend on the action variables only. Therefore, as follows from (13),Z is a master
symmetry ofXH , which contradicts the initial assumption.

The same proof is applicable in the case of a generator of degree greater than 3.
Therefore we arrive at the following conclusion.

Proposition 3.1.Any C-integrable Hamiltonian system can only have generators of degree
no greater than 2.

Compactness of the corresponding invariant submanifold is essential here; if this
condition does not hold, the system can have generators of an arbitrary degree. For
example, the above-mentioned Calogero–Moser system considered in [4] was shown to
have generators of an arbitrary degree, since its constant level surfaceNc was proved to be
diffeomorphic to Liouville’scylinder, which was not compact.
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4. The bi-Hamiltonian case

Now consider the bi-Hamiltonian case, namely that where the Hamiltonian vector field
of the system (1) can be defined by two Poisson bivectorsP0 and P1 with the following
properties:
(i) The vector fieldXH has two Hamiltonian representations:

XH = P0dH1 = P1dH0 (19)

whereH1 andH0 are the corresponding Hamiltonians.
(ii) The linear operatorA := P0P

−1
1 (assumingP1 in non-degenerate) has a vanishing

Nijenhuis tensor:

NA(X, Y ) = A2[X, Y ] + [AX, AY ] − A([AX, Y ] + [X, AY ]) = 0 (20)

for arbitrary vector fieldsX, Y ∈ T M2k. In this case the operatorA is called arecursion
operator and has at least doubly degenerate eigenvalues [12], which are the first integrals
of the vector field (19), in involution with respect to both Poisson bivectorsP0 andP1. This
leads to complete integrability in Arnol’d–Liouville’s sense of the bi-Hamiltonian system
(19) [13, 14, 15].

Now assume that equation (19) is a non-degenerate with respect to the Hamiltonian
function H1, and so can be defined in the action–angle variables(Ii, ϕi), because of
its complete integrability. Then in these coordinates the operatorA depends only on
the action variablesIi . Indeed, the vector fieldY i := ∑k

i=1 Ai
j ∂/∂ϕj is a symmetry of

XH = (∂H0/∂Ii) ∂/∂ϕi , sinceLXH
(A) = 0, and by the Leibniz rule

[XH, Y ] = LXH
(Y ) = ALXH

(
∂

∂ϕ

)
+ LXH

(A)
∂

∂ϕ
= 0.

Thus by the Brouzet lemma, the vector fieldY has the representation (7) and so the recursion
operatorA depends only on the action variables.

Having a master symmetryZ0 of XH , one can construct an infinite hierarchy of
master symmetries. This can be achieved by actingAn on the initial master symmetry
Z0 : Zn := AnZ0, n = 1, . . . . It can easily be seen that ifZ0 is presented in the generic
form (13), the mapM : Z0 → Zn := AnZ0 is an automorphism up to the representation
(13), since for eachn the linear operatorAn depends on the action variables only. Thus all
vector fieldsZn are given by (in the action–angle variables):

Zn =
k∑

i=1

Ui
n(I )

∂

∂ϕi

+
k∑

i=1

Wi
n(I )

∂

∂Ii

i = 1, . . . , k.

Therefore the hierarchy{Z0, Z1, . . . , Zn, . . .} consists of master symmetries of the system
(19). Moreover, if the recursion operatorA is non-degenerate, we can also extend this chain
for negative integersn. The last conclusion was derived for a general system of coordinates
[5] (although without the assumption of non-degeneracy) using lengthy calculations. Similar
reasonings were employed in [12] to generate an infinite hierarchy of non-trivial symmetries.
Finally, we conclude that the approach employed by Brouzet is proved to be quite effective
for studying master symmetries.
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